2024 MCAS Informational Webinar on Constructed Responses

Sample Constructed-Response Scoring Training Pack

Grade 10 Mathematics

Question 1: MCAS Grade 10 Mathematics
 (Released in 2021)

The types and colors of the vehicles for sale at a dealership are shown in this table.

Vehicles for Sale				
	Red	Blue	Green	Total
Vans	53	127	51	231
Trucks	62	78	49	189
Total	115	205	100	420

A. Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.
B. What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.
C. What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.
D. How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

Grade 10 Constructed Response Sample Response

Part A: 45\%
> There are 420 total vehicles at the dealership, 189 of which are trucks.
$>\frac{189}{420}=0.45$

Part B: $\frac{127}{231}$
> There are 231 vans for sale and 127 of them are blue OR
$>$ Equivalent percentage with work or explanation

Part C: $\frac{293}{420}$
$>$ There are 115 red vehicles and there are 231 vans, 53 of which are red.
$>(115+231-53) / 420=\frac{293}{420}$

Part D: 104
$>$ There are 53 red vans and there are 51 green vans for sale.
$>53+51=104$

Grade 10 Constructed Response Scoring Guide

Scoring Guide	
Score	Description
$\mathbf{4}$	The student response demonstrates an exemplary understanding of the Statistics and Probability concepts involved in summarizing categorical data for two categories in two-way frequency tables and interpreting relative frequencies in the context of the data. The student calculates relative frequencies based on information in a table.
	The student response demonstrates a good understanding of the Statistics and Probability concepts involved in summarizing categorical data for two categories in two-way frequency tables and interpreting relative frequencies in the context of the data. Although there is significant
$\mathbf{3}$	evidence that the student was able to recognize and apply the concepts involved, some aspect of the response is flawed. As a result, the response merits 3 points.
$\mathbf{2}$	The student response demonstrates a fair understanding of the Statistics and Probability concepts involved in summarizing categorical data for two categories in two-way frequency tables and interpreting relative frequencies in the context of the data. While some aspects of the task are completed correctly, others are not. The mixed evidence provided by the student merits 2 points.
$\mathbf{1}$	The student response demonstrates a minimal understanding of the Statistics and Probability concepts involved in summarizing categorical data for two categories in two-way frequency tables and interpreting relative frequencies in the context of the data.
$\mathbf{0}$	The student response contains insufficient evidence of an understanding of the Statistics and Probability concepts involved in summarizing categorical data for two categories in two-way frequency tables and interpreting relative frequencies in the context of the data. As a result, the response does not merit any points.

Constructed Response Scoring Notes

Answer-only (possible in all parts):

Part B:

- full credit for correct fraction $\frac{127}{231}$ with no work or support

Parts A, C and D:

- One or two answer(s)-only = 1 point
- Three answers-only $=2$ points

Scoring for each part:

Part A:

$>$ Correct fraction with incorrect percentage is scored as answer-only

Part B:

$>$ full credit for correct fraction with no work/explanation since information can only be found by reading table correctly
$>$ full credit for a correct percentage with correct fraction in work or explanation

Part C:

$>$ percentage of $69-70 \%$ with no work or explanation shows some understanding at the $0 / 1$ score line

Part D:

$>$ full credit for an answer of $\frac{104}{420}$ with work or explanation
$>$ answer of $\frac{104}{420}$ with no work or explanation shows some understanding at the $0 / 1$ score line

Training Set of Student Responses

(with scores)

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

45\%

$$
\frac{189}{420}=.45
$$

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

127
 $\overline{231}$
 number of blue vans over number of total vans

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

$231($ vans $)+62($ RedTrucks $)=293$
 293
 420

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

$53+51=104$

Anchor Score: 3

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

```
45% of the vehicles are trucks at the
dealership. I found this by taking the
total number of trucks, 189, and
dividing it by the total number of
vehicles on sale, 420.
\frac{189}{420}=.45=45%
```


Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

$\frac{127}{231}$

I took the amount of vans that were blue and put in a fraction as the numerator. The denominator is the total number of vans for sale.

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

```
346
I got 346 by adding the total number of
vans on sale and adding the total
number of red vehicles. The
denominator is 420 because that was
the total number of vehicles on sale.
```


Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

```
104
420
I found 104 by adding together the
number of green vans and the number
of red vans. The denominator is the
total number of vehicles on sale, 420.
```


Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

about 45 perecnt becasue 180 divided by 420 equals .45

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

127 over 231

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

231 over 420

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

215

Anchor Score: 1

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

47\%

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

49\%

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

94\%

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

104

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

the percentage of trucks is below 50\% eacaus the total of trucks is 189 and vans ar 231

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

$\frac{3}{4}$ i lookd at the data and went thats the aswer

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

$\frac{1}{5}$ beacause it is very little

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

$\frac{3}{4}$ of it is the answer because th data

Set of Student Responses

(without scores)
For Educator Practice

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

you ad all the number trucks theres is and you get a total of 189

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

$\frac{127}{321}$ you add all the number of vans and get total of 321 and the blue vans that are blue are 127.

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

208

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

104 you add the number of green and red

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

$$
\begin{aligned}
& \frac{189}{420}=.45=45 \% \\
& 45 \% \text { of vehicles are trucks }
\end{aligned}
$$

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

127
$\overline{231}$

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

$$
62+231=293
$$

$\underline{293}$
420

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

$$
\begin{aligned}
& 53+51=104 \\
& 104 \text { of the vehicles for sale are vans } \\
& \text { and are either red or green } \\
& \frac{104}{420} \text { of the vehicles for sale are vans } \\
& \text { and areeither red or green } \\
& 24 \% \text { of the vehicles for sale are vans } \\
& \text { and are either red or green }
\end{aligned}
$$

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

28\%

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

205

 420
Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

about 70\%

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

3

Practice Response D

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.

30% are trucks

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.
\square

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

```
50
600
```


Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

430

$$
53+62+115+51+49+100=430
$$

Part A

Based on the table, what percentage of the vehicles for sale at the dealership are trucks? Show or explain how you got your answer.
45% of the cars at the dealerships are
trucks. To solve for this you must add
the total number of trucks, then you
must add the total number of cars.
Finally, divide the number if trucks by
the number of total cars and multiply
by 100 to find the answer.

Part B

What fraction of the vans for sale at the dealership are blue? Show or explain how you got your answer.

About 55\% of the vans are blue. To solve this yu must, divide the total number of blue vans by the total number of vans and multiply by 100. Finally, round to get the answer.

Part C

What fraction of the vehicles for sale at the dealership are red or are vans? Show or explain how you got your answer.

$$
\begin{aligned}
& \frac{293}{420} \text { are the total of red or vans in the } \\
& \text { dealership. To find this you must add } \\
& \text { the total of red cars and the the total of } \\
& \text { vans together but only add the red van } \\
& \text { once. Then you divide by the total } \\
& \text { number of cars. }
\end{aligned}
$$

Part D

How many of the vehicles for sale at the dealership are vans and are either red or green? Show or explain how you got your answer.

342 are either vans and red or green. To find this you must add the total number of vand and the the total number of red and green cars. But you don't add the red and green van more than once to the number.

Question 2: MCAS Grade 10 Mathematics
 (Released in 2023)

Ellis runs around a track at a constant speed.

- The distance around the track is $\frac{1}{4}$ mile.
- It takes Ellis 3.2 minutes to run around the track once.
A. What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
B. What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.
C. What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.
D. Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

Constructed Response Sample Response

Part A: 12 minutes 48 seconds
> $3.2 \times 4=12.8$ minutes (multiply 0.8 by 60 to get seconds) OR
$>$ Other mathematically equivalent answer

Part B: 412.5 feet/min
$>\frac{1320}{3.2}=412.5 \mathrm{OR} \frac{5280}{12.8}=412.5 \mathrm{OR}$
$>$ Other mathematically equivalent answer

Part C: 4.6875 miles per hour
$>\frac{1 \text { mile }}{12.8 \text { minutes }} \cdot \frac{60 \text { minutes }}{1 \text { hour }}=4.6875 \frac{\text { miles }}{\text { hour }}$ OR
$>$ Other mathematically equivalent answer

Part D: Yes, Ellis will reach his goal.
$>$ If he runs for 40 minutes, he will cover 12.5 laps each day, which is 62.5 laps in 5 days
$>\frac{62.5}{4}=15.625$, so he will cover 15.625 miles in the week, which is greater than 15 miles OR equivalent

Constructed Response Scoring Guide

Scoring Guide

Score	Description
$\mathbf{4}$	The student response demonstrates an exemplary understanding of the Number and Quantity concepts involved in using units as a way to understand problems and to guide the solution of multi-step problems. The student uses dimensional analysis and solves problems that require the manipulation of units.
$\mathbf{3}$	The student response demonstrates a good understanding of the Number and Quantity concepts involved in using units as a way to understand problems and to guide the solution of multi-step problems. Although there is significant evidence that the student was able to recognize and apply the concepts involved, some aspect of the response is flawed. As a result, the response merits 3 points.
$\mathbf{2}$	The student response demonstrates a fair understanding of the Number and Quantity concepts involved in using units as a way to understand problems and to guide the solution of multi-step problems. While some aspects of the task are completed correctly, others are not. The mixed evidence provided by the student merits 2 points.
$\mathbf{1}$	The student response demonstrates a minimal understanding of the Number and Quantity concepts involved in using units as a way to understand problems and to guide the solution of multi-step problems.
$\mathbf{0}$	The student response contains insufficient evidence of an understanding of the Number and Quantity concepts involved in using units as a way to understand problems and to guide the solution of multi-step problems. As a result, the response does not merit any points.

Constructed Response Scoring Notes

Answer-only (possible in Parts A, B and C):

- One or two answer(s)-only $=1$ point
- Three answers-only $=2$ points

Handy conversions:

- 1 mile $=5280$ feet
- 1 mile $=1760$ yards
- $1 / 4$ mile $=1320$ feet
- $1 / 4$ mile $=440$ yards

Scoring for each part:

Part A:

$>$ Full credit for rounding to 13 or truncating to 12 with appropriate work/explanation.
$>$ No credit for rounding/truncating to 13 or 12 with no work/explanation. It is not accepted as answer-only.

Part B:

$>$ Full credit for truncating 412.5 to 412 with appropriate work/explanation.
$>$ No credit for calculating 1320 feet per $1 / 4$ mile.

Part C:

$>$ A response of 4.6 or 4.7 (or more precise) is acceptable without support and is scored as answer-only.
$>$ Full credit for rounding to 5 or truncating to 4 with appropriate work/explanation.
$>$ No credit for a response of 4 or 5 only.

Part D:

> This question is dichotomous, so no credit for a response of "yes" only.
$>$ Full credit for a response of "yes" with supporting work or explanation to show more than 15 miles running.
> Full credit for a response of "yes" with supporting work or explanation to show fewer than 200 minutes running.

Training Set of Student Responses

(with scores)

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
12.8 minutes
$3.2 \times 4=12.8$

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

```
4 1 2 \text { feet}
\frac{1}{4}}\mathrm{ mile is }1320\mathrm{ feet
1320\div3.2=412
```


Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.
4.6 Miles per hour

60 miles per hour as reference for 1 hour.
$60 \div 12.8=4.6$

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

```
Yes he will.
40\times5=200
200\div12.8=15.625
```


Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.

It take Ellis 12.8 minutes to around a mile.

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

Ellis runs 412.5 feet per minute.

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.
Ellis runs 4.7 miles per hour.

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

Yes Ellis will meet this goal because they will run 15.62 miles if they run 40 minutes for 5 days.

Training Response Score: 2

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
12.8 minutes. $\frac{1}{4}$ of a mile is 1320 feet. multiply 3.4 by 4 and you get 12.8

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.
412.5. $\frac{1}{4}$ of a mile is 1320 feet. Divide that by 3.2. You get 412.5 feet a minute.

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

2.4 miles pe hour

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

Yes, she will even succeed her goal too. 12.8 multiplied by 5 is 64 .

Training Response Score: 1

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.

12.8 minutes

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

2450 feet

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

19 mph

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

```
yes
```

Training Response Score: 0

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.

3.2 minutes

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

```
400 feet
```


Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

5 miles

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

$$
5+15+40=60
$$

Set of Student Responses (without scores) For Educator Practice

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
3.2×4
takes 12.8 minutes

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.
\square

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

4 mph
 60
 $\overline{12.8}$

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

yes

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.

3.2×4

12.8 minutes takes ellis 3.2 minutes to run $\frac{1}{4}$ of a mile I multiplied that by 4 to get the full mile

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

```
412.5 feet per minute
1 mile is 5280 feet
5,280 \div4
1320 \div3.2minutes }=412.5\mathrm{ per minute
```


Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

```
4.6 miles per hours
60\div12.8 minutes }=4.
```


Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

```
12.8\times15
it will take 192 minutes to complete this goal
because every mile ellis take 12.8 minutes
and his goal in total will take 200 minutes
40\times5=200
he will make his goal
```


Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
it takes Wllis around 13 minutes to run a mile. I took how many minutes it takes her to run a lap timed by how many laps in total there is.

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

400 ft she can run in a minute.

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

$\frac{3.2}{\frac{1}{4}} 3.2$ over $\frac{1}{4}$ because 3.2 is how much shes runs a lap in to the $\frac{1}{4}$ of laps

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

Yes because of her pace she will be able to, as long as she stays the steedy pace shes at

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
it took her 3.2 minutes to make a full lap around the track

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

```
she would be running only a quarter of it if she ran for one minute
```

considering it only took her 3.2 minutes to get around it fully

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

7 mhp she was only running a short distance and she was running am avg mph of 7

Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.

```
Yes she will as she trains more her speed is only going to get better thus
leading her to get faster and get her time to her liking
```


Practice Response E

Part A

What is the total amount of time, in minutes, it takes Ellis to run one mile? Show or explain how you got your answer.
$\frac{1}{4}=3.2$
$3.2 \times 4=12.8$

Part B

What is the total distance, in feet, Ellis runs in 1 minute? Show or explain how you got your answer.

$$
125 \text { feet. }
$$

Part C

What is the rate, in miles per hour, Ellis runs around the track? Show or explain how you got your answer.

```
12.8 minutes = 1 mile
60 minutes / 12.8 miles =4.6875
Ellis can run about 5 miles in a hour.
```


Part D

Ellis will run for 40 minutes every day for 5 days, with a goal of running a total of 15 miles. Will Ellis meet this goal? Explain your reasoning.
yes Ellis will because in 38.4 minutes Ellis runs 3 miles so in 5 days she will meet her goal in 15 miles total.

